

Resistance Thermometer Input (RTD)

TYPE	MEASUREMENT RANGE	MINIMUM RANGE
Pt100 ($\alpha = 0.003\ 85\ ^\circ\text{C}^{-1}$)	(-200 to 650) °C [-328 to 1202] °F	10 °C [18 °F]
Connection Type	2- or 3-wire connection cable resistance compensation possible in the 2-wire system (0 to 20) Ω	
Sensor cable resistance	maximum 11 Ω per cable	
Sensor current	$\leq 0.6\ \text{mA}$	

Output (Analog)

Output signal	(4 to 20) mA or (20 to 4) mA
Transmission as	Temperature linear
Maximum load	$(V_{\text{power supply}} - 10\ \text{V}) / 0.022\ \text{A}$ (current output)
Digital filter 1st degree	(0 to 8) s
Induced current required	$\leq 3.5\ \text{mA}$
Current limit	$\leq 23\ \text{mA}$
Switch on delay	4 s (during power $I_a = 3.8\ \text{mA}$)
Electronic response time	1 s

Failure Mode

Undershooting measurement range	Decrease to 3.8 mA
Exceeding measurement range	Increase to 20.5 mA
Sensor breakage/short circuit	$\leq 3.6\ \text{mA}$ or $\geq 21.0\ \text{mA}$

Electronic Connection

Power supply	$U_b = (10\text{ to }35)\ \text{V dc}$, polarity protected
Allowable ripple	$U_{ss} \leq 3\ \text{V}$ at $U_b \geq 13\ \text{V}$, $f_{\text{max}} = 1\ \text{kHz}$

Resistance Thermometer Accuracy (RTD)

TYPE	MEASUREMENT ACCURACY
Pt100	$\pm 0.2\ ^\circ\text{C}$ or 0.08% ^[1]
Reference conditions	Calibration temperature (23 ± 5) °C [73 ± 9] °F

General Accuracy

Influence of power supply	$\pm 0.01\%/\text{V}$ deviation from 24 V ^[2]
Load influence	$\pm 0.02\%/100\ \Omega$ ^[2]
Temperature drift	$T_d = \pm (15\ \text{ppm}/^\circ\text{C} \times (\text{range end value} + 200) + 50\ \text{ppm}/^\circ\text{C} \times \text{measurement range}) \times \Delta\vartheta$ $\Delta\vartheta$ = deviation of the ambient temperature according to the reference condition
Long term stability	$\leq 0.1\ ^\circ\text{C}/\text{year}$ ^[3] or $\leq 0.05\%/\text{year}$ ^{[1][3]}

[1] % is related to the adjusted measurement range (the value to be applied is the greater)

[2] All data is related to a measurement end value of 20 mA

[3] Under reference conditions